摘要:隨著現代科學技術的發展,體積小、重量輕便于攜帶的GPS定位裝置和高精度的技術指標為T程測量帶來了極大的方便。
關鍵詞:GPS,工程測量
概述
GPS是美國從20世紀70年代開始研制,歷時20年,于1994年全面建成,具有海、陸、空全方位實施三維導航與定位能力的新一代衛星導航與定位系統。GPS接收機的改進,廣域差分技術、載波相位差分技術的發展,加之美國SA技術的解除,使得GPS技術在導航、運載工具實時監控、城市規劃、工程測量等領域有了更為廣泛的應用。
(RTK(Real Time Kinematics,實時動態)技術是在GPS基礎上發展起來的、能夠實時提供流動站在指定坐標系中的三維定位結果,并在一定范圍內達到厘米級精度的一種新的GPS定位測量方式,是GPS應用的重大里程碑。RTK測量是將l臺GPS接收機安裝在已知點上對GPS衛星進行觀測,將采集的載波相位觀測量調制到基準站電臺的載波上,再通過基準站電臺發射出去;流動站在對GPS衛星進行觀測并采集載波相位觀測量的同時,也接收由基準站電臺發射的信號,經解調得到基準站的載波相位觀測量;流動站的GPS接收機再利用0TF(運動中求解整周模糊度)技術由基準站的載波相位觀測量和流動站的載波相位觀測量來求解整周模糊度,最后求出厘米級精度流動站的位置。RTK測量可以不布設各級控制點,僅依據一定數量的基準控制點,便可以高精度、快速地測定圖根控制點、界址點、地形點、地物點的坐標,利用測圖軟件可以在野外一次生成電子地圖。同時,也可以根據已有的數據成果快速的進行施工放樣。因此,RTK被廣泛應用于圖根控制測量,地籍、房地產測繪、數字化測圖及施工放樣等各種工作中。
1 GPS測量模式
隨著GPS技術的進步和接收機的迅速發展,GPS在測量定位領域已得到了較為廣泛的應用。但是,針對不同的領域和用戶的不同要求,需要采用的具體測量方法是不一樣的。一般來說,GPS測量模式可分為靜態測量和動態測量兩種模式,而靜態測量模式又分常規靜態測量模式和快速靜態測量模式,動態測量模式分準動態測量模式(后處理動態,走走停停)和實時動態測量模式,實時動態測量模式分DGPS和RTK方式。下面分別介紹如下:
1.1常規靜態測量
這種模式采用兩臺(或兩臺以上)GPS接收機,分別安置在一條或數條基線的兩端,同步觀測4顆以上衛星,每時段根據基線長度和測量等級觀測45分鐘以上的時間。這種模式一般可以達到5mm十1ppm的相對定位精度。 常規靜態測量常用于建立全球性或國家級大地控制網,建立地殼運動監測網、建立長距離檢校基線、進行島嶼與大陸聯測、鉆井定位及精密工程控制網建立等。
1.2快速靜態測量
這種模式是在一個已知測站上安置一臺GPS接收機作為基準站,連續跟蹤所有可見衛星。移動站接收機依次到各待測測站,每測站觀測數分鐘。這種模式常用于控制網的建立及其加密、工程測量、地籍測量等。需要注意的是這種方法要求在觀測時段內確保有5顆以上衛星可供觀測;流動點與基準點相距應不超過20km。
1.3準動態測量
這種模式是在一個已知測站上安置一臺GPS接收機作為基準站,連續跟蹤所有可見衛星。移動站接收機在進行初始化后依次到各待測測站,每測站觀測幾個歷元數據。這種方法不同于快速靜態,除了觀測時間不一樣外,它要求移動站在搬站過程中不能失鎖,并且需要先在已知點或用其它方式進行初始化(采用有OTF功能的軟件處理時例外)。這種模式可用于開闊地區的加密控制測量、工程定位及碎部測量、剖面測量及線路測量等。需要注意的是這種方法要求在觀測時段內確保有5顆以上衛星可供觀測;流動點與基準點相距應不超過20km。
另外,有一種連續動態測量,也屬于這種模式。這種測量是在一個基準點安置接收機連續跟蹤所有可見衛星。流動接收機在初始化后開始連續運動,并按指定的時間間隔自動記錄數據。這種方法常用于精密測定運動目標的軌跡、測定道路的中心線、剖面測量、航道測量等。
2 GPS在工程測量中的應用
2.1GPS測量的技術設計
(1)設計依據 GPS測量的技術設計主要依據1999年建設部發布的行業標準《城市測量規范》、1997年建設部發布的行業標準《全球定位系統城市測量技術規程》[3]及工程測量合同有關要求制定的。
(2)設計精度 根據工程需要和測區情況,選擇城市或工程二級GPS網作為測區首級控制網。要求平均邊長小于1 km,最弱邊相對中誤差小于1/10 000,GPS接收機標稱精度的固定誤差a≤15 mm,比例誤差系數b≤20×10-6。
(3)設計基準和網形 如圖2所示,控制網共12個點,其中聯測已知平面控制點2個(I12,I13),高程控制點5個(I12,I13,105,109,110,其高程由四等水準測得)。采用3臺GPS接收機觀測,網形布設成邊連式。
(4)觀測計劃 根據GPS衛星的可見預報圖和幾何圖形強度(空間位置因子PDOP),選擇最佳觀測時段(衛星多于4顆,且分布均勻,PDOP值小于6),并編排作業調度表。
2.1GPS測量的外業實施
(1)選點 GPS測量測站點之間不要求一定通視,圖形結構也比較靈活,因此,點位選擇比較方便。但考慮GPS測量的特殊性,并顧及后續測量,選點時應著重考慮:①每點最好與某一點通視,以便后續測量工作的使用;②點周圍高度角15°以上不要有障礙物,以免信號被遮擋或吸收;③點位要遠離大功率無線電發射源、高壓電線等,以免電磁場對信號的干擾;④點位應選在視野開闊、交通方便、有利擴展、易于保存的地方,以便觀測和日后使用;⑤選點結束后,按要求埋設標石,并填寫點之記。
(2)觀測 根據GPS作業調度表的安排進行觀測,采取靜態相對定位,衛星高度角15°,時段長度45min,采樣間隔10 s。在3個點上同時安置3臺接收機天線(對中、整平、定向),量取天線高,測量氣象數據,開機觀察,當各項指標達到要求時,按接收機的提示輸入相關數據,則接收機自動記錄,觀測者填寫測量手簿。
2.3GPS測量的數據處理
GPS網數據處理分為基線解算和網平差兩個階段,采用隨機軟件完成。經基線解算、質量檢核、外業重測和網平差后,得到GPS控制點的三維坐標,其各項精度指標符合技術設計要求。
3 GPS在測量中的應用體會
3.1測量精度高
GPS觀測的精度明顯高于一般常規測量,在小于50 km的基線上,其相對定位精度可達1×10-6,在大于1 000 km的基線上可達1×10-8。
3.2觀測時間短。GPS接收機觀測基本實現了自動化、智能化,且觀測時間在不斷減少,大大降低了作業強度,觀測質量主要受觀測時衛星的空間分布和衛星信號的質量影響。但由于各別點的選定受地形條件限制,造成樹木遮擋,影響對衛星的觀測及信號的質量,經重測后通過。因此,應嚴格按有關要求選點,擇最佳時段觀測,并注意手機、步話機等設備的使用。隨著GPS測量技術的不斷完善,軟件的不斷更新,在進行GPS測量時,靜態相對定位每站僅需20 min左右,動態相對定位僅需幾秒鐘。
3.3儀器操作簡便。目前GPS接收機自動化程度越來越高,操作智能化,觀測人員只需對中、整平、量取天線高及開機后設定參數,接收機即可進行自動觀測和記錄。GPS衛星數目多,且分布均勻,可保證在任何時間、任何地點連續進行觀測,一般不受天氣狀況的影響。
3.4GPS控制網選點靈活,布網方便,基本不受通視、網形的限制,特別是在地形復雜、通視困難的測區,更顯其優越性。但由于測區條件較差,邊長較短(平均邊長不到300 m),基線相對精度較低,個別邊長相對精度大于1/10 000。因此,當精度要求較高時,應避免短邊,無法避免時,要謹慎觀測。
3.5GPS測量的數據傳輸和處理采用隨機軟件完成,只要保證接收衛星信號的質量和已知數據的數量、精度,即可方便地求出符合精度要求的控制點三維坐標。但由于聯測已知高程點較少(僅聯測5個),致使的控制點高程精度較低。因此,要保證控制點高程的精度,必須聯測足夠的已知高程點。
4結束語
伴隨著測繪新技術的不斷進步,現代工程測量必將朝著測量內外作業一體化、數據獲取及處理自動化、測量過程控制和系統行為智能化、測量成果和產品數字化、測量信息管理可視化、信息共享和傳播網絡化的趨勢發展。
論文指導 >
SCI期刊推薦 >
論文常見問題 >
SCI常見問題 >