代數(shù)是許多科學(xué)領(lǐng)域的通用語言。在開發(fā)這門語言的過程中,數(shù)學(xué)家們證明了證明代數(shù)適用性的定理和設(shè)計(jì)方法。使用這種語言,許多領(lǐng)域的科學(xué)家發(fā)現(xiàn)代數(shù)對(duì)于創(chuàng)建方法、技術(shù)和工具來解決他們的特定問題是不可或缺的。應(yīng)用代數(shù)在工程,通信和計(jì)算將發(fā)表嚴(yán)格的數(shù)學(xué),原始的研究論文,報(bào)告代數(shù)方法和技術(shù)有關(guān)的所有領(lǐng)域,涉及計(jì)算機(jī),智能系統(tǒng)和通信。范圍包括,但不限于,視覺、機(jī)器人、系統(tǒng)設(shè)計(jì)、系統(tǒng)的可靠性和容錯(cuò)性,超大規(guī)模集成技術(shù)、信號(hào)處理、信號(hào)理論、編碼、錯(cuò)誤控制技術(shù)、密碼學(xué)、協(xié)議規(guī)范,網(wǎng)絡(luò),軟件工程,算法,算法復(fù)雜性,計(jì)算機(jī)代數(shù),編程語言,邏輯函數(shù)式編程,代數(shù)規(guī)范,項(xiàng)重寫系統(tǒng),定理證明,圖形建模、知識(shí)工程、專家系統(tǒng)和人工智能方法論。純理論論文將不會(huì)被主要尋找,但論文處理領(lǐng)域的問題,如交換或非交換代數(shù),群理論,場(chǎng)理論,或?qū)嶋H代數(shù)幾何,這是有興趣的應(yīng)用,在上述領(lǐng)域是與本雜志相關(guān)的。在實(shí)際方面,技術(shù)和專有技術(shù)轉(zhuǎn)讓的論文,從工程,無論是刺激或說明在適用的代數(shù)研究范圍內(nèi)的范圍。
Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems.Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology.Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal.On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >