日本在线观看不卡,国产成人免费观看,国产gaysex男同视频chinese,欧美一级www

樹人論文網(wǎng)一個(gè)專業(yè)的學(xué)術(shù)咨詢網(wǎng)站!!!
樹人論文網(wǎng)
學(xué)術(shù)咨詢服務(wù)

Advances in Difference Equations

來源: 樹人論文網(wǎng) 瀏覽次數(shù):282次
周期:Quarterly
ISSN:1687-1847
影響因子:1.51
是否開源:No
錄用比:容易
學(xué)科方向:
通訊地址:HINDAWI PUBLISHING CORPORATION, 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, USA, NY, 10022
官網(wǎng)地址:http://advancesindifferenceequations.springeropen.com/
投稿地址:http://advancesindifferenceequations.springeropen.com/submission-guidelines
網(wǎng)友分享經(jīng)驗(yàn):偏慢,4-8周

Advances in Difference Equations雜志中文介紹

《差分方程的進(jìn)展》是一本同行評議的開放獲取期刊。差分方程理論、方法及其廣泛的應(yīng)用已經(jīng)超越了青少年時(shí)期,在應(yīng)用分析中占據(jù)了中心地位。事實(shí)上,在過去的12年里,數(shù)百篇研究論文、幾部專著、許多國際會議和許多特別會議都見證了這一主題的擴(kuò)散。微分方程和差分方程理論構(gòu)成了現(xiàn)實(shí)問題的兩種極端表示形式。例如,當(dāng)一個(gè)簡單的總體模型被表示為微分方程時(shí),它表現(xiàn)出良好的解的行為,而相應(yīng)的離散模擬則表現(xiàn)出混沌行為。人口的實(shí)際行為介于兩者之間。發(fā)表在《差分方程進(jìn)展》上的文章將包括這種情況。差分方程研究進(jìn)展的目的是報(bào)道差分方程領(lǐng)域的新進(jìn)展及其在各個(gè)領(lǐng)域的應(yīng)用。差分方程的進(jìn)展將接受高質(zhì)量的文章,其中包含原始研究結(jié)果和具有特殊價(jià)值的調(diào)查文章。

Advances in Difference Equations雜志英文介紹

Advances in Difference Equations is a peer-reviewed open access journal .The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 12 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. Articles published in Advances in Difference Equations will include such situations.The aim of Advances in Difference Equations is to report new developments in the field of difference equations, and their applications in all fields. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.

Advances in Difference Equations影響因子