日本在线观看不卡,国产成人免费观看,国产gaysex男同视频chinese,欧美一级www

樹人論文網(wǎng)一個(gè)專業(yè)的學(xué)術(shù)咨詢網(wǎng)站!!!
樹人論文網(wǎng)
學(xué)術(shù)咨詢服務(wù)

JOURNAL OF MACHINE LEARNING RESEARCH

來(lái)源: 樹人論文網(wǎng) 瀏覽次數(shù):239次
創(chuàng)刊時(shí)間:2001
所屬分區(qū):3區(qū)
周期:Bimonthly
ISSN:1532-4435
影響因子:4.091
是否開源:Yes
年文章量:149
錄用比:較難
學(xué)科方向:自動(dòng)化與控制系統(tǒng)
研究方向:工程技術(shù)
通訊地址:MICROTOME PUBL, 31 GIBBS ST, BROOKLINE, USA, MA, 02446
官網(wǎng)地址:http://jmlr.org/
投稿地址:http://jmlr.org/author-info.html
網(wǎng)友分享經(jīng)驗(yàn):平均2月

JOURNAL OF MACHINE LEARNING RESEARCH雜志中文介紹

《機(jī)器學(xué)習(xí)研究雜志》(JMLR)提供了一個(gè)國(guó)際論壇,用于電子和紙質(zhì)出版機(jī)器學(xué)習(xí)各個(gè)領(lǐng)域的高質(zhì)量學(xué)術(shù)文章。所有發(fā)表的論文均可在網(wǎng)上免費(fèi)查閱。JMLR尋求以前未發(fā)表的關(guān)于機(jī)器學(xué)習(xí)的論文,其中包含:新的原則性算法,具有良好的經(jīng)驗(yàn)驗(yàn)證,并具有理論、心理或生物學(xué)性質(zhì)的合理性;實(shí)驗(yàn)或理論研究,對(duì)智能系統(tǒng)中的學(xué)習(xí)設(shè)計(jì)和行為產(chǎn)生新的見(jiàn)解;說(shuō)明現(xiàn)有技術(shù)的應(yīng)用,闡明這些方法的優(yōu)缺點(diǎn);正式化新的學(xué)習(xí)任務(wù)(例如,在新的應(yīng)用環(huán)境中)和評(píng)估這些任務(wù)績(jī)效的方法;開發(fā)新的分析框架,促進(jìn)實(shí)踐學(xué)習(xí)方法的理論研究;自然學(xué)習(xí)系統(tǒng)在行為或神經(jīng)層面上的數(shù)據(jù)計(jì)算模型;對(duì)現(xiàn)有工作的非常好的書面調(diào)查。

JOURNAL OF MACHINE LEARNING RESEARCH雜志英文介紹

The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR seeks previously unpublished papers on machine learning that contain:New principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;Experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;Accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;Formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;Development of new analytical frameworks that advance theoretical studies of practical learning methods;Computational models of data from natural learning systems at the behavioral or neural level;Extremely well-written surveys of existing work.

JOURNAL OF MACHINE LEARNING RESEARCH影響因子

自動(dòng)化與控制系統(tǒng)領(lǐng)域相關(guān)期刊
    暫時(shí)沒(méi)有數(shù)據(jù)