秩序提出了關(guān)于有序結(jié)構(gòu)的最原始和創(chuàng)新的研究,以及圖論和組合學(xué),格理論和代數(shù),集合論和關(guān)系結(jié)構(gòu)以及計(jì)算理論中的有序理論方法的使用。 在這些類別的每一個(gè)中,我們都會(huì)尋求大量使用排序來研究數(shù)學(xué)結(jié)構(gòu)和過程的提交。 秩序和組合學(xué)的相互作用是特別令人感興趣的,將秩序理論工具應(yīng)用于離散數(shù)學(xué)和計(jì)算中的算法也是如此。 關(guān)于有限和無限階理論的文章是受歡迎的。秩序的范圍由編輯部的集體利益和專業(yè)知識(shí),這是在這些網(wǎng)頁上描述的進(jìn)一步明確。 提交作者被要求識(shí)別其興趣最符合其工作主題的董事會(huì)成員或成員,因?yàn)檫@有助于確保有效和權(quán)威的審查。
Order presents the most original and innovative research on ordered structures and the use of order-theoretic methods in graph theory and combinatorics, lattice theory and algebra, set theory and relational structures, and the theory of computing. In each of these categories, we seek submissions that make significant use of orderings to study mathematical structures and processes. The interplay of order and combinatorics is of particular interest, as are the application of order-theoretic tools to algorithms in discrete mathematics and computing. Articles on both finite and infinite order theory are welcome. The scope of Order is further defined by the collective interests and expertise of the editorial board, which are described on these pages. Submitting authors are asked to identify a board member, or members, whose interests best match the topic of their work, as this helps to ensure an efficient and authoritative review.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >